Applications of Taylor Series

Recall that we used the linear approximation of a function in Calculus 1 to estimate the values of the function near a point a (assuming f was differentiable at a):

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a) \quad \text { for } \quad x \quad \text { near } \quad a
$$

Now suppose that $f(x)$ has infinitely many derivatives at a and $f(x)$ equals the sum of its Taylor series in an interval around a, then we can approximate the values of the function $f(x)$ near a by the nth partial sum of the Taylor series at x, or the nth Taylor Polynomial:

$$
\begin{aligned}
& f(x) \approx T_{n}(x) \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

$T_{n}(x)$ is a polynomial of degree n with the property that $T_{n}(a)=f(a)$ and $T_{n}^{(i)}(a)=f^{(i)}(a)$ for $i=1,2, \ldots, n$.
Note that $T_{1}(x)$ is the linear approximation given above.

Example

Example For example, we could estimate the values of $f(x)=e^{x}$ on the interval $-4<x<4$, by either the fourth degree Taylor polynomial at 0 or the tenth degree Taylor. The graphs of both are shown below.

Approximations

If $f(x)$ equals the sum of its Taylor series (about a) at x, then we have

$$
\lim _{n \rightarrow \infty} T_{n}(x)=f(x)
$$

and larger values of n should give of better approximations to $f(x)$. The approximation We can use Taylor's Inequality to help estimate the error in our approximation.

The error in our approximation of $f(x)$ by $T_{n}(x)$ is $\left|R_{n}(x)\right|=\left|f(x)-T_{n}(x)\right|$. We can estimate the size of this error in two ways:

- 1. Taylor's Inequality If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$ then the remainder $R_{n}(x)$ of the Taylor Series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for } \quad|x-a| \leq d
$$

- 2. If the Taylor series is an alternating series, we can use the alternating series estimate for the error.

Example

Example (a) Consider the approximation to the function $f(x)=e^{x}$ by the fourth McLaurin polynomial of $f(x)$ given above.

- $e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}$.
(b) How accurate is the approximation when $-4 \leq x \leq 4$? (Give an upper bound for the error on this interval).
- We have $\frac{d^{5} e^{x}}{d x^{5}}=e^{x}$ and hence $\left|\frac{d^{5} e^{x}}{d x^{5}}\right|<e^{4}$ if $|x|<4$.
- If $|x|<4$, Taylor's inequality says that $\left|R_{n}(x)\right| \leq \frac{e^{4}}{(5)!}|x|^{5}<\frac{e^{4}}{(5)!}|4|^{5}=465.9$ on this interval.
- This is a conservative estimate of the error on this interval. In fact $\left|R_{n}(x)\right| \leq 65$ on this interval.
(c) Find an interval around 0 for which this approximation has error $<.001$.
- By Taylor's approximation, If x is in the interval $(-r, r)$, then $\left|R_{n}(x)\right| \leq \frac{e^{r}}{(5)!}|x|^{5} \leq \frac{e^{r}}{(5)!}|r|^{5}$.
- To find such an r with $\left|R_{n}(x)\right| \leq .001$, it suffices to find a value of r for which $\frac{e^{r}}{(5)!}|r|^{5} \leq .001$.
- If we assume that $r<1$, we have $e^{r}<e$ and we need an r with $\frac{e}{(5)!}|r|^{5} \leq .001$ or $|r|^{5}<\frac{.001 \times 5!}{e}$. This works if $r<\sqrt[5]{\frac{.001 \times 5!}{e}} \approx 0.53$

Example: Estimating values of e^{x},

Example (a) Find the third Taylor polynomial of $f(x)=e^{x}$ at $a=2$.

$$
\begin{aligned}
& T_{3}(x)=f(2)+f^{\prime}(2)(x-2)+ \\
& \frac{f^{(2)}(2)}{2!}(x-2)^{2}+\frac{f^{(3)}(2)}{3!}(x-2)^{3} \\
& =e^{2}+e^{2}(x-2)+\frac{e^{2}}{2!}(x-2)^{2}+ \\
& \frac{e^{3}}{3!}(x-2)^{3} .
\end{aligned}
$$

(b) Use Taylor's Inequality to give an upper bound for the error possible in using this approximation to e^{x} for $1<x<3$.

- By Taylor's theorem, we have $\left|R_{n}(x)\right|=\left|e^{x}-T_{3}(x)\right| \leq \frac{M|x-2|^{4}}{4!}$, where $M=\max \left|f^{(4)}(x)\right|$ on the interval $(1,3)$.
- $M=e^{3}$ works and hence the error of approximation $=\left|R_{n}(x)\right| \leq \frac{e^{3}|x-2|^{4}}{4!} \leq \frac{e^{3}}{4!}=.837$ for any x in $(1,3)$.

Example

Example (a) Find the third Taylor polynomial of $g(x)=\cos x$ at $a=\frac{\pi}{2}$.

- $g(x)=\cos x, g^{\prime}(x)=-\sin x$,

$$
\begin{aligned}
& \quad g^{\prime \prime}(x)=-\cos x, g^{(3)}(x)=\sin x . \\
& g\left(\frac{\pi}{2}\right)=0, \quad g^{\prime}\left(\frac{\pi}{2}\right)=-1, \\
& g^{\prime \prime}\left(\frac{\pi}{2}\right)=0, \quad g^{(3)}\left(\frac{\pi}{2}\right)=1 . \\
& T_{3}(x)=g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\left(x-\frac{\pi}{2}\right)+ \\
& \frac{g^{\prime \prime}\left(\frac{\pi}{2}\right)}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\frac{g^{(3)}\left(\frac{\pi}{2}\right)}{3!}\left(x-\frac{\pi}{2}\right)^{3}
\end{aligned}
$$

- $T_{3}(x)=-\left(x-\frac{\pi}{2}\right)+\frac{\left(x-\frac{\pi}{2}\right)^{3}}{3!}$.
(b) Use the fact that the Taylor series is an alternating series to determine the maximum error possible in using this approximation to $\cos x$ for $\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$?
- At any point x in $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ the Taylor series for $\cos x$ at $a=\frac{\pi}{2}$ is an alternating series converging to $\cos x$:

$$
T(x)=-\left(x-\frac{\pi}{2}\right)+\frac{\left(x-\frac{\pi}{2}\right)^{3}}{3!}-\frac{\left(x-\frac{\pi}{2}\right)^{5}}{5!} \ldots
$$

- Therefore the error from the above approximation is

$$
\left|R_{n}(x)\right|=\left|\cos x-T_{3}(x)\right| \leq\left|\frac{\left(x-\frac{\pi}{2}\right)^{5}}{5!}\right| \leq \frac{\left(\frac{\pi}{4}\right)^{5}}{5!}=\frac{\pi^{5}}{4^{5} 5!}=.0024
$$

